
Visual Programming IS202

1

Visual Programming IS202

Chapter Two

User Interface Design

INTRODUCTION

Chapter 2

In this chapter uses numerous controls. You will build a project form that is similar to that shown below. It

will include the following new controls:

 TextBox

 MaskedTextBox

 GroupBox

 RadioButton

 CheckBox

 PictureBox

Control tool Name Text Other Properties

Form1 StudentInfo
VB University –
Message
Application

StartPosition=CenterScree
n

GroupBox1,
GroupBox2,
GroupBox3

GroupBox1, GroupBox2,
GroupBox3

Student
Information,
Background, Text
Color

Label1, Label2, Label3,
Label4

Label1, Label2, Label3,
Label4

Name

Major

Visual Programming IS202

2

Phone

Output

TextBox1, TextBox2,
MaskedTextBox1,
RichTextBox

NametextBox,
MajorTextBox,
PhoneMaskedTextBox,
OutputTextBox

Readonly=True,
Tabstop=False, Forecolor,
Backcolor, TextAlign,
WordWrap, BorderStyle,
TabIndex.

Mask.

outputRichTextBox has
Readonly=True,
WordWrap,
MultyLine=True

RadioButton1,
RadioButton2,RadioBu
tton3,
RadioButton4,RadioBu
tton5, RadioButton6

GrayRadioButton,
RedRadioButton,
BlueRadioButton,
GreenRadioButton,
BlackRadioButton,
WhiteRadioButton,

Gray, Red, Blue,
Green, Black,
White

Checked=True or False

CheckBox1 MessageCheckBox Message Vissible

PictureBox1,
PictureBox2

SunPictureBox,
SnowPictureBox

Choose Image, Size Mode,
Visible,
BackgroundImageLayout

Button1, Button2,
Button3

DissplayButton,
ResetButton, ExitButton

Display Message,
Reset, Exit

ForeColor, Backcolor

GroupBox Control

A GroupBox control is used to group or contain other controls. It is used to organize a form into different

sections and this can make the form easier for an application user to use.

 Name property – most of the time you will not bother to name a GroupBox control because they are
rarely referred to when you write programming code – if you were to name the control, a name such
as grpbxStdInfo would be appropriate.

 Text property – displays the words in the upper left corner of the GroupBox control. If you leave the Text
property blank, the GroupBox looks like a rectangle.

The form above has three GroupBox controls with Text property settings

of Student Information, BackGround, and Text Color.

TextBox and Label Controls

 TextBox controls can be used for:

 Data input – this use requires no special property settings.

 Data output display.

Visual Programming IS202

3

o Set the ReadOnly property to True and the TextBox looks like a Label.

o You can also use a label to display output, but a TextBox a control is easier to use.

o Set TabStop = False to keep from tabbing to a read only TextBox.

The form in the figure shown above has three TextBox controls – two of them are accompanied by two Label

controls inside of the Name Information GroupBox control.

 The label controls display the words "Name:" and "Major:" – these are prompts to tell the system user
what type of information is to be typed into the TextBox controls.

 Don't bother naming Label controls – you will not refer to them later in programming code.

 Set the Text property to the Label control to the prompt to be displayed – "Name:" and "Major:".

 The first two TextBox controls are next to the labels.

 Data entered into a TextBox control is saved to the Text property of the control.

 Assign the Name property a meaningful name to each TextBox – NameTextBox and MajorTextBox or
(txtName, txtDept).

The third TextBox is used to display output and has an accompanying label with the Text property

= Output: and the Name property = OutputLabel.

 Name property for= OutputTextBox or (txtOutput).

 ReadOnly property = True.

 MultiLine property = True – the size of the TextBox is then stretched to allow for multiple output lines.

 Other TextBox control properties include:

 ForeColor – color of the text in the control.

 BackColor – color of the background – white is the default.

 TextAlign – your options are to display the text left, right, or center justified. Left is the default.

 Multiline – set to True if the TextBox will display more than one line of text – the default is False.

 WordWrap – this property determines if the contents of a TextBox should wrap to a second line (or
subsequent lines) if the output will not fit on a single line – the default is True.

 ReadOnly – set to True if the TextBox will only display output – the default is False so you can type text
into the TextBox.

MaskedTextBox Control

The MaskedTextBox control is a special form of TextBox control with special properties to format the data

entered by an application user.

 Name property – use a name such as PhoneMaskedTextBox or (txtPhoneNo).

 Mask property – set to different input mask values. Click the ellipse button on the property to open up
the Input Mask window shown in the figure below.

Visual Programming IS202

4

 In the figure above, the Phone number mask description is selected. Note the display of the example
mask.

 In the figure showing the form design, the MaskedTextBox control is accompanied by a label with
a Text value of "Phone:" that provides a prompt.

 RichTextBox Control

The RichTextBox control is a special form of TextBox control with special properties to enable applying

different character and paragraph formatting, as with word processor software package.

 Name property – use a name such as OutputRichTextBox or (RchtxtOutput).

 WordWrap and Multiline properties – apply to the RichTextBox just as they do to a regular TextBox.

This figure illustrates use of a RichTextBox to display text loaded from a “RTF (Rich Text File)” file by use of

this coding segment (the file is stored in the project’s \bin\debug folder):

 'Display information from Rich TextBox Contents.rtf file to the RichTextBox

 RichTextBox1.LoadFile("RichTextBoxContents.rtf")

Visual Programming IS202

5

Start a New Project

Start VB.NET. Create a new project named Ch02VBUniversity.

 Form property settings:

 FileName – set to StudentInfo.vb.

 Text property to read VB University – Message Application.

 StartPosition property – set to CenterScreen.

 Add a GroupBox control to store student information.

 Text property – as shown in the figure above.

 You can name the GroupBox control, but it is not necessary as you will not refer to its name when
writing code.

 Add three Label controls and two TextBox controls to the GroupBox as shown in the figure.

 Name property of the Label controls – leave as the default value.

 Name property of the TextBox controls – NameTextBox and MajorTextBox.

 Add a MaskedTextBox control to the GroupBox as shown in the figure.

 Name property – PhoneMaskedTextBox.

 Mask property – Phone number.

Add the output TextBox control and accompanying Label control below the GroupBox control as shown in

the figure.

 Label property settings:

o Name property – OutputLabel.

o Text property– Output:.

 TextBox property settings:

o Name property – OutputTextBox.

o ReadOnly property – True.

o TabStop property – False.

o MultiLine property – True.

 Save the project and run it. Attempt to enter data into the TextBox and MaskedTextBox controls to ensure

the controls work properly.

RadioButton Control

RadioButton controls are used to restrict the selection of values from a defined set of alternatives.

Visual Programming IS202

6

 Name property – use a name such as GrayRadioButton or RedRadioButton or (rdButGray, rdbutRed).

 Checked property – only one RadioButton control in a group can be the default – specify this by setting
its Checked property to True – the default is False.

 Only one RadioButton in a group can be selected at a time – selecting a new RadioButton causes the
other RadioButtons to be unselected.

 Text property – displays next to the RadioButton, e.g., Black, Red, Blue, etc.

 RadioButtons that are to function as a group of RadioButtons should be placed inside a GroupBox
control. RadioButton controls not in a group that are just on a form function as a group, but this keeps
you from creating more than one group.

 Format menu – use this to align/size the controls and set vertical/horizontal spacing. Select the controls
by holding down CTRL or SHIFT keys and using the mouse to click each one in order. The first control
selected is the base control which all of the other controls will mirror.

Continue In-Class Exercise

Add two GroupBox controls and set the following properties:

 Text property – as shown in the figure.

 Add RadioButton controls inside each GroupBox and set their properties:

o Text – Gray, Red, Blue, and Green in one and Black and White in the other.

o Checked – set to True for the Gray and the Black RadioButtons.

o Name – name each RadioButton an appropriate name,

e.g., GrayRadioButton, RedRadioButton, etc.

 Save the project and run it. Select among the RadioButton controls. You should find that when you select

one control, the previously checked control within the group is unchecked.

CheckBox Control

CheckBox controls are similar to RadioButton controls except that they are used whenever the system user

can select zero, one, or more than one of the options presented by CheckBoxes.

 Our program only has a single CheckBox control, although you can always use as many as are necessary.

 Name property – use a name such as MessageCheckBox.

Visual Programming IS202

7

 Checked property – works like the RadioButton – stores True or False, depending on whether the
CheckBox is checked.

Continue In-Class Exercise

Add a CheckBox control and set the properties as indicated:

 Name property – set to MessageCheckBox.

 Text property – set to Message Visible as shown in the figure.

Save the project and run it. You should be able to check and uncheck the CheckBox, but this doesn't have any

effect on the program interface yet – later you'll write code to make the CheckBox do something.

PictureBox Control

The PictureBox control is used to display images on a form.

 Put the control on the form – stretch it to the size desired – notice that the control is empty.

 Name property – use a name such as SnowPictureBox.

 Image property – access this property to display the Select Resource dialog box as shown in the figure
below to add an image to the PictureBox – any kind of image will generally do – ico (icon), bitmap, jpg,
gif, etc.

 SizeMode property – set this to the StretchImage value in order to cause an icon file to fill the entire
PictureBox control space.

 Visible property – set to True to make an image visible; False to make an image invisible.

Visual Programming IS202

8

This code segment demonstrates how to make a PictureBox control appear or disappear by setting

the Visible property with program code at run time.

 'Turn on the sun and turn off the snow

 SunPictureBox.Visible = True

 SnowPictureBox.Visible = False

 Other Image Facts

 You can set the BackgroundImage property of a form or control to create an effect with a background
image.

 You can alter the appearance of an image with the BackgroundImageLayout property -- setting it to Tile,
Center, Stretch, or Zoom.

 Buttons and other controls have an Image property that will cause the display of a graphic on the control.

Continue In-Class Exercise

Add two PictureBox controls to your project form. Place these side by side and use the Format menu to size

them to identical sizes. Set the properties as follows:

 Name property – SunPictureBox and SnowPictureBox.

 Image property – import two images of the sun and snow to the resource listing.

 SizeMode property – set both to a StretchImage value to stretch the image to fill a PictureBox control.

 Visible property – set the SunPictureBox to True (the default), and the SnowPictureBox to False.

 Note: To add icon files with the .ico filename extension, select the All Files for the Files of type option in

the Open dialog box.

 Run your project to confirm that the sun displays and the snow doesn't – later you will write program code

to make the images appear and disappear.

Application Design

Adding a Professional Touch

BorderStyle property – Labels, TextBox and PictureBox controls all have a BorderStyle property – this

property makes controls appear as either flat or three-dimensional.

 BorderStyle property -- set to an appropriate value to enhance the appearance of a form and add a
professional touch to a project.

 BorderStyle property values:

o None – flat appearance with no border.

o FixedSingle – a flat appearance with black border.

o Fixed3D – for a TextBox, this looks about like FixedSingle. For a Label control, the appearance

is a three-dimensional, recessed appearance.

 The TextBox control default value for BorderStyle is Fixed3D.

Visual Programming IS202

9

 The Label and PictureBox controls default value for BorderStyle is None.

Multiple Controls

You may need to modify several controls of the same type, for example, several Buttons or CheckBoxes or

Labels to select and set properties that they have in common such as the BorderStyle. This will also enable

you to align controls on a form more rapidly.

Methods to select more than one control at a time:

 Lasso method – if the controls are located on a form near to each other, simply place the mouse pointer
at one corner of an imaginary box around the controls, hold down the left mouse button and drag the
mouse toward the opposite corner. You'll notice that a "dashed line" selection box forms around the
controls, and when you release the mouse button, each selected control will be highlighted with selection
handles like those shown around the buttons in this figure.

 Shift and Ctrl (Control) key method – hold down either the Shift or Ctrl key and single-click the other
controls that you wish to select. This approach works best when selecting controls that are not next to
one another or controls located inside a GroupBox control.

 Edit menu, Select All option – this selects all controls on a form.

To "unselect" a group of controls, click away from the controls someplace on the form.

Once selected, you can:

 move all controls selected as a group by dragging them with the mouse button.

 set properties of multiple controls that are common properties. For example, you can select the three
command buttons on your in-class exercise form and set the BackColor property to red for all three
buttons at the same time. This is faster than setting them one at a time.

 align and resize controls by using the buttons on the Layout Toolbar shown in the figure below. If this
toolbar is not visible, select the View menu, Toolbars option and select the Layout Toolbar. The toolbar
buttons are disabled (grayed out) until you select more than one control. Practice with this tool bar now.

User Interface Features

The form you design should be easy to use. The more intuitive the form is in terms of system user's

understanding how to use it, the less training that will be required to teach system users how to be productive

with the computer applications that you program. Follow these guidelines.

Visual Programming IS202

10

 Color

 Use predominantly gray colors to avoid problems for people who are color blind.

 Use white backgrounds for TextBoxes and gray backgrounds for Labels. The background for read-only
TextBoxes is also gray. Using different colors will keep application users from trying to type data into
Labels and read-only TextBoxes where data cannot be entered, and will make the areas on a form can be
used for data entry more obvious.

Grouping and BorderStyle

 Use GroupBoxes to group controls to aid the system user in organizing how information on a form is
presented and is to be used.

 If Labels display messages such as prompts to enter data into an accompanying TextBox, leave the Labels
with a flat BorderStyle property.

Fonts

 Use a MS Sans Serif font for most information on a form as this font is easiest for most people to read.

 Do not use large fonts except for a limited number of items.

 Do not use bold or italic fonts except to highlight select information.

Form's AcceptButton and CancelButton Properties

Set these properties of the Form control to map keyboard keys to Button controls on a form.

 AcceptButton property – maps the keyboard Enter key to the specified button on the form – makes the
Enter key act like you've clicked the button with the mouse.

 CancelButton property – maps the keyboard ESC key to a specified button on the form.

Tab Order

 Select the View menu, Tab Order option to display the tab order for a form as shown in this figure.

 Change the order numbering by mouse-clicking on the numbers.

 Tabbing should be left to right, top to bottom.

Visual Programming IS202

11

 TabIndex property – changing the tab order sets the TabIndex property value (a numeric value) for a
control – it is the order of the numbers that actually controls the tabbing during run time.

o TabIndex values start at zero (0) and increase one unit at a time – most controls are assigned

a TabIndex value (PictureBox controls are not).

o A control with TabIndex = 0 has the focus on startup of an application.

 Select the View menu, Tab Order option again to turn off the display of the tab order.

 TabStop property – set this to False if you do not want a control to be in the tab order.

 Labels – even though labels have a tab order number, they cannot receive the focus so you cannot tab to
a label.

 GroupBox and RadioButtons/CheckBoxes – you can tab to a GroupBox, but you must use the up/down
arrow keys to select among RadioButtons or CheckBoxes.

 Set the tab order, and then examine the TabIndex property of each control.

Keyboard Access Keys

 Define keyboard access keys (hot keys) for buttons and other controls in case the computer mouse quits
working – also this provides shortcuts favored by some individuals.

 Access keys are letters in text that are underlined.

 Type an ampersand (&) just before the intended hot key character in the Text property of the button. For
example, to display Exit, type E&xit – this will make the Alt-X key combination the hot keys for the Exit
button.

 Do not use the same hot key more than once on a form.

Visual Programming IS202

12

 When grouping a Label and TextBox control, you can use the & symbol to create a hot key for the Label—
since a Label control cannot get focus, the focus will shift to the next control in the tab order which will
be the associated TextBox control.

 Windows Operating System Alt Key – if the underline does not appear on a control at run time, you can
press the Alt key to initiate the use of the hot keys.

Form's StartPosition Property

 StartPosition property – as you learned in chapter 1, set to CenterScreen to display a form centered on
the display at run time.

Tool Tips

Tool tips are small labels that display whenever an application user pauses the mouse pointer over a toolbar

button or a form control.

 Each form needs only one ToolTip control.

 Access the toolbox and add a ToolTip control (component) by double-clicking it as shown in this figure.

 The ToolTip control displays in the component tray at the bottom of the IDE below the form. The
default Name property value is ToolTip1.

Visual Programming IS202

13

 ToolTip on ToolTip1 property:

o A single ToolTip control on a form causes each control on the form acquires a property with

this name when you add a tool tip control to the project.

o Type the text of the tip to display into the ToolTip on ToolTip1 property of a control such as a

button as shown in this figure.

o At run time, pausing the mouse over a control will cause the tool tip to display.

Continue In-Class Exercise

Modify the form to make the appearance and use of the form more professional.

 Use the Layout Toolbar to align all controls on the form that might not be aligned properly.

 Set the form's AcceptButton and CancelButton properties to map the DisplayButton button to
the Enter key and the ResetButton button to the ESC key.

 Select all three buttons at the same time – set the BackColor property of all three buttons to light blue.

 Define hot keys for the three buttons as shown in the above figure.

 Define hot keys for the Name:, Major:, and Phone: Label controls.

 Check the tab order of the controls on your project. Ensure that they tab from top to bottom, left to right.

 Add a ToolTip control to the project. Add appropriate tip messages for the input TextBox,
MaskedTextBox, and Button controls.

 Run the project to check that the modifications made display properly during project execution.

Program Coding

Exit Button – Click Event

From your study of Chapter 1 you should recall how to use the Close method for the form (use

the Me keyword) to code the Exit Button's click event.

Visual Programming IS202

14

 Private Sub ExitButton_Click(ByVal sender As System.Object, ByVal e As Syste

m.EventArgs) Handles ExitButton.Click

 'Exit the form

 Me.Close()

 End Sub

Display Message Button – Click Event

Clicking the Display Message Button control should cause the Output TextBox control to display three

separate lines of output as shown in this figure. This display is actually one long string of text – this is termed

string or text concatenation that is the addition of different strings of text together.

The concatenation operator is the ampersand (&) – you can also use the plus symbol (+) – the result is to

simply add two strings of text or characters together to form a longer, single string.

 Example of string concatenation:

"42" & "16" is NOT equal to 58 – the correct answer is the string of characters 4216

"42" & " " & "16" results in a string of 42 16 -- Note the blank space that has been concatenated

(added) to the middle of the string of characters.

"42" & ControlChars.NewLine & "16" results in output on two lines like this:

42

16

Visual Programming IS202

15

The ControlChars.NewLine is a value of the ControlChars (control characters) VB enumeration of values used

to control the output display of information (your textbook also notes that you can use

the Environment.NewLine constant as well).

Sometimes you will need to display text typed into a TextBox control to another TextBox or label control. This

is easily accomplished with an assignment statement like the one shown here. This code would be placed

inside a Click event for a button control.

OutputTextBox.Text = "My name: " & NameTextBox.Text

You may need to display information from two or more TextBox controls to a single TextBox or label

control.

 Use the concatenation operator (the ampersand & symbol) to concatenate information (means to add
two or more strings together) from the Text properties of the controls and store the single resulting string
to the Text property of the receiving control.

 This code produces the output shown in the above figure.

 Private Sub DisplayButton_Click(ByVal sender As System.Object, ByVal e As Sy

stem.EventArgs) Handles DisplayButton.Click

 'Store output message to the output TextBox

 OutputTextBox.Text = "My name: " & NameTextBox.Text &

ControlChars.NewLine & "Major: " & MajorTextBox.Text & ControlChars.NewLine

& "Local phone: " & PhoneMaskedTextBox.Text

 End Sub

You may find the above code difficult to read because the code wraps around multiple display lines. You can

break the code up into readable segments by using the underscore (_) character as a continuation character

for a line of VB code. You'll also notice that we indented the continued line 4 spaces. This is a normal coding

procedure to make the code easier to read.

 Private Sub DisplayButton_Click(ByVal sender As System.Object, ByVal e As Sy

stem.EventArgs) Handles DisplayButton.Click

 'Store output message to the output TextBox

 OutputTextBox.Text = "My name: " _

 & NameTextBox.Text _

 & ControlChars.NewLine _

 & "Major: " _

 & MajorTextBox.Text _

 & ControlChars.NewLine _

 & "Local phone: " _

Visual Programming IS202

16

 & PhoneMaskedTextBox.Text

 End Sub

You can break a line of code any place except in the middle of a string of text that is within double-quote

marks. This is equivalent to the above.

 Private Sub DisplayButton_Click(ByVal sender As System.Object, ByVal e As Sy

stem.EventArgs) Handles DisplayButton.Click

 'Store output message to the output TextBox

 OutputTextBox.Text = "My name: " & NameTextBox.Text _

 & ControlChars.NewLine & "Major: " _

 & MajorTextBox.Text & ControlChars.NewLine _

 & "Local phone: " & PhoneMaskedTextBox.Text

 End Sub

You can also use implicit line continuation. VB 10 allows you to continue a line just by pressing the Enter key

to break the line into two or more lines, but the line break has to come:

 after a comma, or

 after an opening parenthesis or before a closing parenthesis, or

 after a concatenation operator (&), or

 after the equal sign in an assignment statement.

Valid Examples (valid break after the equal sign and the concatenation operator):

 OutputTextBox.Text =

 "My name: " &

 NameTextBox.Text

 OutputTextBox.Text =

 "My name: " & NameTextBox.Text & ControlChars.NewLine &

 "Major: " & MajorTextBox.Text & ControlChars.NewLine &

 "Local phone: " & PhoneMaskedTextBox.Text

 Invalid Example (break at the wrong place for both the equal sign and the concatenation operator)

 OutputTextBox.Text

 = "My name: "

 & NameTextBox.Text

Visual Programming IS202

17

Continue In-Class Exercise

Add code for the Click event for both the Display Message and Exit buttons.

 Test the display of output.

RadioButtons – CheckedChanged Event

The primary event used for RadioButton controls is NOT the Click event – it is the CheckedChanged event.

 CheckedChanged fires whenever a RadioButton's Checked property value changes.

 Each RadioButton control can have its own CheckedChanged event procedure.

 You will use the CheckedChanged event to modify the color properties of different controls on the form.

Setting Control Colors

Most controls have both ForeColor and BackColor properties. To review earlier material:

 ForeColor property – sets the color of the text display.

 BackColor property – sets the background color of a control.

 Colors are defined in VB as an enumeration of values – an enumeration is a list of predefined values. The

enumeration name for colors is simply Color and is accessed by typing the word Color followed by

the dot. Intellisense will list enumerated color values by their name.

 Colors are set by use of an assignment statement along with the Intellisense popup window’s list of

enumerated values as shown in this figure and the examples below the figure.

Visual Programming IS202

18

Examples:

'Set the text color of the NameTextBox to black

NameTextBox.ForeColor = Color.Black

 'Set the color of the text of the for the form to white

NameTextBox.BackColor = Color.White

 'Set the background color of the form to blue

Me.ForeColor = Color.Blue

This sub procedure is the code for the Red RadioButton control's CheckedChanged event.

 The code sets the BackColor property of the form (referenced by keyword Me) to red.

 Private Sub RedRadioButton_CheckedChanged(ByVal sender As System.Object, ByV

al e As System.EventArgs) HandlesRedRadioButton.CheckedChanged

 'Set the backcolor of the form

 Me.BackColor = Color.Red

 End Sub

This sub procedure changes the ForeColor property of the form changing the text from the default color

black to the color white.

 Private Sub WhiteRadioButton_CheckedChanged(ByVal sender As System.Object, B

yVal e As System.EventArgs) HandlesWhiteRadioButton.CheckedChanged

 'Set form's text color

 Me.ForeColor = Color.White

 End Sub

Saving a Color to a Variable

In Chapter 3 you will learn about variables in detail, but basically a variable is a storage location in memory

and a variable can store a lot of different types of data. You will learn to use a variable to store the default

background color of a form (the default color is control gray).

 Variables can be declared using the keyword Private.

 Variables declared at module-level as shown in the figure below are accessible from any sub procedure
within an application.

Visual Programming IS202

19

In chapter 7 you will learn about a Form’s Load event in detail – here you are introduced to this event.

 Click the Form’s title bar to generate the Load event sub procedure.

 The Load event executes when the form loads from disk storage into computer memory.

 Here the form’s BackColor value (the standard default gray color) is stored to the module-
level GrayBackGroundColor variable declared above. This code executes when the form initially loads
from disk into memory at the beginning of program execution.

 Private Sub StudentInfo_Load(ByVal sender As System.Object, ByVal e As Syste

m.EventArgs) Handles MyBase.Load

 'Assign background color to module-level variable

 GrayBackGroundColor = Me.BackColor

 End Sub

 This sub procedure is the CheckedChanged event for the GrayRadioButton control. Note how

the GrayBackGroundColor variable that stores gray color is used to reset the BackColor property of the

form.

 Private Sub GrayRadioButton_CheckedChanged(ByVal sender As System.Object, By

Val e As System.EventArgs) HandlesGrayRadioButton.CheckedChanged

 'Set the backcolor of the form to the default gray

 Me.BackColor = GrayBackGroundColor

 End Sub

CheckBox – CheckedChanged Event

CheckBox controls also exhibit a CheckedChanged event when their Checked property changes value. This

code causes the OutputTextBox control to appear and disappear depending on whether

the MessageCheckBox control is checked or not.

 Private Sub MessageCheckBox_CheckedChanged(ByVal sender As System.Object, By

Val e As System.EventArgs) HandlesMessageCheckBox.CheckedChanged

 'Make the OutputTextBox and OutputLabel invisible

Visual Programming IS202

20

 OutputTextBox.Visible = MessageCheckBox.Checked

 OutputLabel.Visible = MessageCheckBox.Checked

 End Sub

Since both the Visible and Checked properties of controls are Boolean (both store True or False), you can

store the value of a Checked property to the Visible property of another control and cause it to

appear/disappear.

Continue In-Class Exercise

Add code to the project as follows:

 Code the CheckedChanged events for all RadioButtons so that they function as described above.

 Add a module-level variable to store the Form’s default background color.

 Code the form’s Load event as shown above.

 Add code for the CheckedChanged event for the CheckBox control on the form.

Test the display of output.

PictureBox Control – Click Event

A PictureBox control's Click event is accessed by double-clicking on the control.

 The effect you want is to turn the sun into the snow, and back into the sun again when one of the

PictureBox control images is clicked. This is coded with the Visibleproperty by setting the property

to True (displays the image) or False (makes the image invisible).

 Code for the Click event sub procedure for the SunPictureBox control is:

 Private Sub SunPictureBox_Click(ByVal sender As System.Object, ByVal e As Sy

stem.EventArgs) Handles SunPictureBox.Click

 'Turn the sun into the snow

 SnowPictureBox.Visible = True

 SunPictureBox.Visible = False

 End Sub

 Code for the Click event sub procedure for the SnowPictureBox control is:

 Private Sub SnowPictureBox_Click(ByVal sender As System.Object, ByVal e As System.

EventArgs) Handles SnowPictureBox.Click

 'Turn the snow into the sun

 SnowPictureBox.Visible = False

Visual Programming IS202

21

 SunPictureBox.Visible = True

 End Sub

Continue In-Class Exercise

Add code for the Click events for both of the PictureBox controls and test their functionality. Drag one

PictureBox control on top of the other one.

 Test the display of output – it should appear as if the snow turns into the sun and back into the snow again.

Reset Button – Click Event

The Reset button control is used to reset the form to its original condition so that it is prepared for data

entry for another student.

 This requires a number of different coding statements.

 A good way to organize the logic for this event is to first type in remarks to outline the task
requirements as shown in this sub procedure outline.

 Private Sub ResetButton_Click(ByVal sender As System.Object, ByVal e As Syst

em.EventArgs) Handles ResetButton.Click

 'Clear the input and output TextBox and MaskedTextBox controls -

 'This code shows use of the Clear method, String.Empty value, and

 'empty double quote marks

 'Reset the form's BackColor to gray

 'and ForeColor to black

 'Reset the message display CheckBox control to checked

 'Turn on the sun and turn off the snow

 'Set focus to first TextBox

 End Sub

Clearing TextBox, MaskedTextBox, and Label Contents

Use an assignment statement to clear the contents of a TextBox, MaskedTextBox, or label control.

Visual Programming IS202

22

 Assign a value of the empty string to the Text property of these controls.

 The empty string is denoted by typing a set of two double-quote marks together with no space between
them.

 The empty string is also defined by the String.Empty defined VB enumerated value. Examples:

 NameTextBox.Text = ""

 MajorTextBox.Text = String.Empty

 However, the Clear method is used most often to clear a TextBox or MaskedTextBox. Example:

NameTextBox.Clear()

MajorTextBox.Clear()

PhoneMaskedTextBox.Clear()

Selecting and Unselecting RadioButtons and CheckBoxes

You can select and unselect these controls in program code by setting the Checked property to

either True (to select) or False (to unselect). Examples:

'Set the black RadioButton to be checked

BlackRadioButton.Checked = True

'This unchecks a RadioButton control – not used very often

BlueRadioButton.Checked = False

'This checks a CheckBox control

MessageCheckBox.Checked = True

To reset a group of RadioButtons so that one is checked and the others are not checked, you only need to set

the Checked property to True for one of the controls – the others will automatically be set to False.

 For CheckBox controls, you must set each of the control's Checked property to the desired value.

Setting the Focus

If you wish to set the focus of the cursor to a specific control, such as the first TextBox on a form, you use

the Focus method. Example:

 NameTextBox.Focus()

 The completed Click event sub procedure for the Reset button is:

 Private Sub ResetButton_Click(ByVal sender As System.Object, ByVal e As Syst
em.EventArgs) Handles ResetButton.Click

Visual Programming IS202

23

 'Clear the input and output TextBox and MaskedTextBox controls -

 'This code shows use of the Clear method, String.Empty value, and

 'empty double quote marks

 NameTextBox.Clear()

 MajorTextBox.Text = String.Empty

 PhoneMaskedTextBox.Clear()

 OutputTextBox.Text = ""

 'Reset the form's BackColor to gray

 'and ForeColor to black

 GrayRadioButton.Checked = True

 BlackRadioButton.Checked = True

 'Reset the message display CheckBox control to checked

 MessageCheckBox.Checked = True

 'Turn on the sun and turn off the snow

 SunPictureBox.Visible = True

 SnowPictureBox.Visible = False

 'Set focus to first TextBox

 NameTextBox.Focus()

 End Sub

Continue In-Class Exercise

Code the Reset button control’s Click event sub procedure.

 Run the project and test the click events for the button.

The WITH and END WITH Statements

If you need to set several properties for an individual control, you can use the With and End With statements

to shorten the coding, and to make your code easier to read. Additionally, programs written in this fashion

with these With blocks will execute a little bit faster than those that do not use this approach.

Visual Programming IS202

24

 The code shown here will make the NameTextBox control visible, set the text colors for foreground and

background, and set the focus to this control.

 With NameTextBox

 .Visible = True

 .ForeColor = Color.Black

 .BackColor = Color.White

 .Focus()

 End With

 You'll notice that the code inside the With block is indented four spaces. This is normal coding procedure

to make the code easier to read – Visual Basic will automatically indent the code.

 This completes the notes for this chapter. Please take time to rework the In-Class Exercise so that you learn

the material before proceeding to your next lab assignment.

Optional Exercise – Loading a RichTextBox

In this exercise you will practice loading the information from a RTF (Rich Text File) into a RichTextBox.

 1. Copy the RTF file named RichTextBoxContents.rtf into your project folder. Store the file into

the \bin\Debug folder. Note that you can create your own file by using Microsoft Word and saving the

document using file type of “rtf”.

2. Alter the form layout as shown in this figure.

 Add a Label – set the text to display the words Formatted Display:.

 Add a RichTextBox – use the default name of RichTextBox1.

 Add a Button control – name it RichButton.

 Add code to the Button control’s click event to load data into the RichTextBox from the file
 Private Sub RichButton_Click(ByVal sender As System.Object, ByVal e As Syst

em.EventArgs) Handles RichButton.Click

 'Display information from Rich TextBox Contents.rtf file to the

RichTextBox

Visual Programming IS202

25

 RichTextBox1.LoadFile("RichTextBoxContents.rtf")

 End Sub

 Test the application. The information from the file should display in the RichTextBox.

Solution to In-Class Exercise

'Project: Ch02VBUniversity

'D. Bock

'Today's Date

 Public Class StudentInfo

 'Module-level variables/constants

 Private GrayBackGroundColor As Color

 Private Sub DisplayButton_Click(ByVal sender As System.Object, ByVal e As Sy

stem.EventArgs) Handles DisplayButton.Click

 'Store output message to the output textbox using implicit line

continuation

 OutputTextBox.Text =

 "My name: " & NameTextBox.Text & ControlChars.NewLine &

 "Major: " & MajorTextBox.Text & ControlChars.NewLine &

 "Local phone: " & PhoneMaskedTextBox.Text

 End Sub

 Private Sub ResetButton_Click(ByVal sender As System.Object, ByVal e As Syst

em.EventArgs) Handles ResetButton.Click

Visual Programming IS202

26

 'Clear the input and output TextBox and MaskedTextBox controls -

 'This code shows use of the Clear method, String.Empty value, and

 'empty double quote marks

 NameTextBox.Clear()

 MajorTextBox.Text = String.Empty

 PhoneMaskedTextBox.Clear()

 OutputTextBox.Text = ""

 'Reset the form's BackColor to gray

 'and ForeColor to black

 GrayRadioButton.Checked = True

 BlackRadioButton.Checked = True

 'Reset the message display CheckBox control to checked

 MessageCheckBox.Checked = True

 'Turn on the sun and turn off the snow

 SunPictureBox.Visible = True

 SnowPictureBox.Visible = False

 'Set focus to first TextBox

 NameTextBox.Focus()

 End Sub

 Private Sub ExitButton_Click(ByVal sender As System.Object, ByVal e As Syste

m.EventArgs) Handles ExitButton.Click

 'Exit the form

 Me.Close()

 End Sub

 Private Sub SnowPictureBox_Click(ByVal sender As System.Object, ByVal e As S

ystem.EventArgs) Handles SnowPictureBox.Click

 'Turn the snow into the sun

Visual Programming IS202

27

 SnowPictureBox.Visible = False

 SunPictureBox.Visible = True

 End Sub

 Private Sub SunPictureBox_Click(ByVal sender As System.Object, ByVal e As Sy

stem.EventArgs) Handles SunPictureBox.Click

 'Turn the sun into the snow

 SnowPictureBox.Visible = True

 SunPictureBox.Visible = False

 End Sub

 Private Sub GrayRadioButton_CheckedChanged(ByVal sender As System.Object, By

Val e As System.EventArgs) Handles GrayRadioButton.CheckedChanged

 'Set the backcolor of the form to the default gray

 Me.BackColor = GrayBackGroundColor

 End Sub

 Private Sub RedRadioButton_CheckedChanged(ByVal sender As System.Object, ByV

al e As System.EventArgs) Handles RedRadioButton.CheckedChanged

 'Set the backcolor of the form

 Me.BackColor = Color.Red

 End Sub

 Private Sub BlueRadioButton_CheckedChanged(ByVal sender As System.Object, By

Val e As System.EventArgs) Handles BlueRadioButton.CheckedChanged

 'Set the backcolor of the form

 Me.BackColor = Color.Blue

 End Sub

 Private Sub GreenRadioButton_CheckedChanged(ByVal sender As System.Object, B

yVal e As System.EventArgs) HandlesGreenRadioButton.CheckedChanged

 'Set the backcolor of the form

 Me.BackColor = Color.Green

 End Sub

Visual Programming IS202

28

 Private Sub WhiteRadioButton_CheckedChanged(ByVal sender As System.Object, B

yVal e As System.EventArgs) HandlesWhiteRadioButton.CheckedChanged

 'Set form's text color

 Me.ForeColor = Color.White

 End Sub

 Private Sub BlackRadioButton_CheckedChanged(ByVal sender As System.Object, B

yVal e As System.EventArgs) HandlesBlackRadioButton.CheckedChanged

 'Set form's text color

 Me.ForeColor = Color.Black

 End Sub

 Private Sub MessageCheckBox_CheckedChanged(ByVal sender As System.Object, By

Val e As System.EventArgs) Handles MessageCheckBox.CheckedChanged

 'Make the OutputTextBox and OutputLabel invisible

 OutputTextBox.Visible = MessageCheckBox.Checked

 OutputLabel.Visible = MessageCheckBox.Checked

 End Sub

 Private Sub StudentInfo_Load(ByVal sender As System.Object, ByVal e As Syste

m.EventArgs) Handles MyBase.Load

 'Assign background color to module-level variable

 GrayBackGroundColor = Me.BackColor

 End Sub

 Private Sub RichButton_Click(ByVal sender As System.Object, ByVal e As Syste

m.EventArgs) Handles RichButton.Click

 'Display information from Rich TextBox Contents.rtf file to the

RichTextBox

 RichTextBox1.LoadFile("RichTextBoxContents.rtf")

 End Sub

End Class

